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ASYNCHRONOUS PARALLEL
PATTERN SEARCH

APPS (Hough, K., Torczon; 2000) is pattern search
method for solving the unconstrained optimization

problem
min f(xz), =€ R".

Development of APPS was motivated by the need to
remove the synchronization point in each iteration of

standard parallel pattern search.

The theoretical presentation of the method is quite

different than the practical presentation.




THEORETICAL FRAMEWORK

Processors: P =4{1,...,p}
Search Directions: D ={di,...,d,}
Global Time Index: 7T ={0,1,...}

t

Best Known Point: z! (at time t for process 1)

Step Length: A! (at time ¢ for process 1)

(4

Change Indices: 7; (for process %)

At time 0, each process starts a function

evaluation at the point z9 + A? d;. Tt is assumed
that f(z?) is known.




INTERNAL SUCCESSFUL ITERATES

Z; = Set of internal successful iterates for process ¢
to = Time function evaluation begins on process %

t1 = Time function evaluation completes on process %

If .\. A&.Mo —+ DMQ &sv
then &MH = &Mo -+ DMO d;,
and A" = APAY (A < A < Anax).




EXTERNAL SUCCESSFUL ITERATES

E; = Set of external successful iterates for process 7

is communicated to process j




EXTERNAL SUCCESSFUL ITERATE

— Time of external success on process 7

t1 = Time function evaluation completes on process ¢

l
L t—1

r.? =, and f A&MHLV < f A&Mo + Al QS

then start new function evaluations with the

information from the external success.




CONTRACTION ITERATES

C; = Set of contraction iterates for process ¢

=27 and f(z]'70) < f(z + AP d;)

2

then

A" =0 A where 0! € [Omin, Omax] C (0,1)




END OF FUNCTION EVALUATION

Case I: Internal Success
to 7 ?
T —

Case II: (Interim) External Success
t1

Case I1I: Contraction

7




UPDATE FORMULAS

w;(t) = The generating process index
7;(t) = Start time index
v;(t) = Completion time index

NA%V + Dw&@v dy; (1), fteS(=LUE),
t—1

x, ", otherwise.
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%MDMIHU if t € C;,

DML : otherwise.

Lemma: 7; (= S; UC(;) is infinite.




REDUCING THE STEP LENGTH

Goal: liminf D.W. =0 forall j5e€P.

t——+o0

Lemma: If S; is finite for some ¢ € P, then

lim A!=0.

t— 400

Lemma: If S; is finite for some ¢,
then §; is finite for all j € P.

= Finite case 1s trivial.

Corollary: If S; is infinite for some i € P,
then §; is infinite for all 7 € P.




ONE STEP LENGTH GOES T0O ZERO

Lemma: Assume the level set L(zg) is compact.
Suppose S; 1s infinite for all j € P, then there exists
i € P such that

liminf A7) = 0.

t— oo onA.wv o
ﬁmuw&

Finite rational lattice arqument — Torczon, 1997.

Corollary: Suppose S; is infinite for all j € P,
then there exists ¢ € P such that

liminf A? = 0.

t—+o0




ALL STEP LENGTHS GO T'O ZERO

Let process ¢z be such that

lim inf Dﬁ 0,

t—+o0

Key: The supremum of the time between successful

iterates on process 1 goes to +00.

So, on any other process j, the supremum of the
number of contractions between successful iterates

is also going to +oo.

Theorem 1: liminf Dﬂ =0 forall je€P.

t—+o0




ACCUMULATION POINT

Goal: There exists £ 3 lim ' =z forallj € P

t—+ oo J
ﬁmQ).m.

Lemma: Assume the set L(zg) is compact. Then
there exists € R™ and mm C Cq such that

lim A} =0 and lim z} = 2.
t—+ oo t—+ oo
teCq teCq

Same arqgument as in Audet and Dennis, 1999.

= We have an accumulation point for process 1.




ACCUMULATION POINT

Now we need to show that all the other processes

also have & as an accumulation point.

Theorem 2: There exists & and, for each ;7 € P,

A

C; such that

lim zt=zforalljeP

t——+oo J
ﬁmmu

Key: For each t € C1 with £ > t*, there is a cor-
responding time interval devoid of successful points

on each of the other processes, so that they must

both accept ,\& as the best known point and have a

number of contractions.




SEARCH DIRECTIONS

The pattern must be chosen so that it positively

spans R"™. See Lewis and Torczon, 1996.

Defn: A set of vectors {di,...,d,} positively spans
R™ if any vector £ € R" can be written as

r=oqaid; +- - +apdy,, o;>0 Vi

That is, any vector can be written as a nonnegative

linear combination of the basis vectors.

Fact: If {d;,...,d,} positively spans R", then for
any v # 0, there exists d; such that d; v < 0.




FINAL RESULT

Theorem 3: Assume f is continuously differentiable.
Then

lim Vf(z)) =

t— 4 oo
wmQ

Again, borrowing heavily from Audet and Dennis..
By MVT, for all t € 7;(C;), 3 ot € [0, 1] such that :

f(a7) < flaf + Aldi) = f(ag) + ATV f(ag + aiAlds) " ds,
= 0 < Vf(zl + alAld;) d;.
= 0 < Vf(2)'d;forall icP.

Since the d-vectors form a positive basis, that implies

that V(&) =




SUMMARY

Theorem 1: liminf A% = 0 for all j € P.

t—+o0

Theorem 2: Assume £(z') is compact. Then

A

there exists ¢ and, for each j € P, C; such that

lim 2t =2 forall j€P

t— 4 oo J
.wmhm.w.

Theorem 3: Assume f is continuously
differentiable. Then

ﬁmwb QNAanHomon:u.mﬁ.
teC;




ELECTRICAL CIRCUIT SIMULATION

Variables: inductances, capacitances, diode
saturation currents, transistor gains, leakage

inductances, and transformer core parameters

e Simulation Code: SPICES3

M a\wﬂ/\ﬁ a\muvmwvv u

17 unknown characteristics
Simulation voltage at time ¢
Experimental voltage at time ¢

Number of timesteps




CirRculT PROBLEM RESULTS

—— Experimental
- = APPS
Manual




WEB PAGE
http://csmr.ca.sandia.gov/projects/apps.html

APPSPACK

PVM or MPI (Alton Patrick, NCSU)
Bound constrained or unconstrained
Function value cache (Patrick)

Surrogate model (Sarah Brown, U. Wash.)
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